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TWO-DIMENSIONAL DYNAMIC BOUNDARY-VALUE PROBLEMS

FOR CURVILINEAR THERMOVISCOELASTIC BODIES

UDC 539.312, 539.377A. D. Chernyshov

A new numerical-analytical method is proposed and demonstrated using an example of dynamic prob-
lems of a thermoviscoelastic body. In the general formulation, the thermoviscoelastic problem is split
into three simpler problems. In the first problem, boundary functions that should satisfy only boundary
conditions are determined. The second problem with homogeneous boundary conditions and inhomo-
geneous initial conditions is reduced to an eigenvalue problem by introducing special ξ variables and
separating time. This problem is solved by organizing integral superpositions with respect to the an-
gular parameter. A linear algebraic system is obtained as a result of satisfaction of the boundary
conditions at points that partition the curvilinear boundary of the body into small segments. After
the eigenfunctions and eigenvalues are determined, the third problem with homogeneous boundary
and initial conditions is solved by spectral decomposition of unknown functions and inhomogeneous
terms in a coupled system of ordinary differential equations.

Key words: thermoviscoelastic medium, dynamic boundary-value problem, eigenfunctions, eigen-
values.

Introduction. Various models of a thermoelastic body were proposed in [1–3] and other papers. For
geometrically multidimensional cases, the model of a thermoviscoelastic body is very complex since, in addition to
elastic and temperature properties, it takes into account viscous characteristics. Therefore, analytical studies for
these materials are few in number.

In the present paper, we restrict our consideration to a linear model. To this end, the quadratic terms
of the strain-rate tensor which characterize energy dissipation due to viscosity are ignored in the heat-conduction
equation. This simplification is allowable for times from the onset of loading such that the thermal accumulation
of the indicated dissipation is small.

Existing methods for solving thermoelastic problems are based primarily on potentials [4] and integral
transformations [5, 6]. The Ritz method [7], Bubnov–Galerkin method [1], variational principles [8], and finite-
difference techniques [8, 9] are also used. The effectiveness of these methods is limited in the cases where the body
has a complex curvilinear shape. Therefore, there have been very few studies in which the initial boundary-value
problems are solved even for simple geometries of thermoelastic bodies. The present paper proposes a numerical-
analytical method for solving these problems.

1. Formulation of the Problem. By a thermoviscoelastic body is meant a thermoelastic body with
viscous properties. These properties are typical of metals and their alloys subjected to small mechanical and
thermal loads. Figure 1 shows a rheological model of this body. In this case, the total stress σij is decomposed into
elastic σ(e)

ij and viscous σ(v)
ij components:

σij = σ
(e)
ij + σ

(v)
ij , σ

(v)
ij = ζεkk δij + 2χ εij . (1)
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Fig. 1

Here ζ and χ are the viscosity coefficients. Using the laws of thermodynamics of irreversible processes and proceeding
as in [4], we obtain the following linear equations of motion in displacements in Cartesian coordinates:

(λ+ 2µ)uxx + (λ+ µ)vxy + µuyy + (ζ + 2χ)utxx + (ζ + χ)vtxy + χutyy − γTx + G̃1 = ρutt.

(λ+ 2µ)vyy + (λ+ µ)uxy + µvxx + (ζ + 2χ)vtyy + (ζ + χ)utxy + χvtxx − γTy + G̃2 = ρvtt, (2)

γ = (3λ+ 2µ)αt,

Here λ and µ are the elastic constants, ρ is the density, G̃1 and G̃2 are the mass forces, and αt is the thermal expansion
coefficient. The differential equations of system (2) differ qualitatively from similar equations for a thermoelastic
body in that each equation contains a third-order derivative at the viscosity coefficients. This complicates the
solution of the equations. The heat-conduction equation now contains a quadratic term with the strain-rate tensor εij

due to viscous dissipation. For small εij , this term can be omitted and this equation takes the same form as that
for a thermoelastic body:

a∆T − η(uxt + vyt) + q̃ = Tt, η = γT0/(Cρ). (3)

Here ∆ is the Laplace operator, T0 is the initial absolute temperature of the body, C is the specific heat, and
q̃ is the internal heat source. It should be noted that although the omitted viscous dissipation is small, it can be
accumulated with time and have considerable effect on the stress–strain state. Therefore, the closed linear system
(2), (3) for u, v, and T is valid only for a certain finite interval of time t0.

Let the body shape be a bounded domain Ω with a piecewise smooth boundary Γ. The boundary and initial
conditions are written as

u
∣∣∣
Γ

= F1(t, xΓ, yΓ), v
∣∣∣
Γ

= F2(t, xΓ, yΓ), T
∣∣∣
Γ

= F0(t, xΓ, yΓ); (4)

u
∣∣∣
t=0

= ϕ̃1(x, y), ut

∣∣∣
t=0

= ψ̃1(x, y),

v
∣∣∣
t=0

= ϕ̃2(x, y), vt

∣∣∣
t=0

= ψ̃2(x, y), T
∣∣∣
t=0

= ϕ̃0(x, y).
(5)

To solve problem (2)–(5), we write the unknowns u, v, and T as the sum of three functions of x, y, and t:

u = M1 + u(1) + v(1), v = M2 + u(2) + v(2), T = M0 + u(0) + v(0). (6)

The functions Mb (b = 0, 1, 2) will be called boundary functions and constructed so that boundary conditions (4) be
satisfied. The functions Mb may not satisfy Eqs. (2) and (3) but should be three times differentiable with respect
to all its variables, i.e.,

Mb

∣∣∣
Γ

= Fb(t, xΓ, yΓ), Mb ∈ C3(Ω, 0 6 t 6 t0), b = 0, 1, 2. (7)

Let u(0), u(1), and u(2) satisfy the uncoupled homogeneous system

a∆u(0) = u
(0)
t , (λ+ 2µ)u(1)

xx + µu(1)
yy = ρu

(1)
tt , (λ+ 2µ)u(2)

yy + µu(2)
xx = ρu

(2)
tt (8)

subject to the homogeneous boundary conditions

u(b)
∣∣∣
Γ

= 0, b = 0, 1, 2 (9)
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and the inhomogeneous initial conditions

u(b)
∣∣∣
t=0

= ϕ̃b −Mb

∣∣∣
t=0

= ϕb, b = 0, 1, 2, u
(c)
t

∣∣∣
t=0

= ψ̃c −Mct

∣∣∣
t=0

= ψc, c = 1, 2. (10)

Solving problem (8)–(10), we obtain the eigenfunctions and eigenvalues, which are then used to find v(b), i.e., the
solution of the entire problem. Substituting u, v, and T from (6) into (2) and (3) and taking into account (8) for
v(b) (b = 0, 1, 2), we arrive at the following inhomogeneous coupled system of differential equations:

a∆v(0) − η(v(1)
tx + v

(2)
ty ) + q = v

(0)
t ,

q = q̃ + a∆M0 − η(M1tx +M2ty + u
(1)
tx + u

(2)
ty )−M0t,

(λ+ 2µ)v(1)
xx + (λ+ µ)v(2)

xy + µv(1)
yy − γv(0)

x + (ζ + 2χ)v(1)
txx + (ζ + χ)v(2)

txy + χv
(1)
tyy +G1 = ρv

(1)
tt ,

(λ+ 2µ)v(2)
yy + (λ+ µ)v(1)

xy + µv(2)
xx − γv(0)

y + (ζ + 2χ)v(2)
tyy + (ζ + χ)v(1)

txy + χv
(2)
txx +G2 = ρv

(2)
tt ,

G1 = G̃1 + (λ+ 2µ)M1xx + (λ+ µ)(M2xy + u(2)
xy ) + µM1yy + (ζ + 2χ)(M1txx + u

(1)
txx)

(11)

+ (ζ + χ)(M2txy + u
(2)
txy) + χ(M1tyy + u

(1)
tyy)− γ(M0x + u(0)

x )− ρM1tt,

G2 = G̃2 + (λ+ 2µ)M2yy + (λ+ µ)(M1xy + u(1)
xy ) + µM2xx + (ζ + 2χ)(M2tyy + u

(2)
tyy)

+ (ζ + χ)(M1txy + u
(1)
txy) + χ(M2txx + u

(2)
txx)− γ(M0y + u(0)

y )− ρM2tt.

Using (4) and taking into account (6), (7), and (9), for system (11) for the unknowns v(b) (b = 0, 1, 2), we obtain
the homogeneous boundary conditions

v(b)
∣∣∣
Γ

= 0, b = 0, 1, 2, (12)

and from (5) and (10), we have the homogeneous initial conditions

v(b)
∣∣∣
t=0

= 0, b = 0, 1, 2; v
(c)
t

∣∣∣
t=0

= 0, c = 1, 2. (13)

2. Finding the Boundary Functions Mb. The functions Mb should be found explicitly to use the
method described below. The problem of the continuation of the functions Fb with Γ into the internal points of Ω
was thoroughly studied by Nikol’skii [10]. We give some examples of the continuation.

The simplest case and the most important case is the one where the boundary conditions do not depend on
the points of the boundary Γ and depend only on t. Then, Mb = Fb(t). Let the functions Fb depend on the points
of the boundary Γ. If boundary conditions (7) are supplemented by, for example, the Laplace equation ∆Mb = 0,
we express Mb in integral form in terms of Green’s function [11]

Mb =
∫
Γ

Fb
∂G

∂n
dl, Mb

∣∣∣
Γ

= Fb. (14)

The functions Mb can also be obtained using R-functions and Boolean algebra [12].
3. Organizing Integral Superpositions and Constructing Eigenfunctions. We first consider the

auxiliary problem (8)–(10) for a specified domain Ω and 0 6 t 6 t0. We seek particular solutions of system (8)
ignoring the initial conditions. To this end, we separate the time variable in the functions u(b) (b = 0, 1, 2) as
follows:

u(c) = (Ac cos νct+Bc sin νct)Uc(x, y), c = 1, 2; u(0) = A0 e−ν2
0at U0(x, y). (15)

Here A0, Ac, and Bc (c = 1, 2) are unknown constants, νb (b = 0, 1, 2) are eigenvalues, and Ub are eigenfunctions.
To find them, we substitute u(b) from (15) into (8) and (9). Cancelling the time functions relative to Ub, we obtain
the following system of uncoupled and independent homogeneous equations subject to homogeneous boundary
conditions:

∆U0 + ν2
0U0 = 0, Ub|Γ = 0, b = 0, 1, 2,
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(λ+ 2µ)U1xx + µU1yy + ρν2
1U1 = 0, (λ+ 2µ)U2yy + µU2xx + ρν2

2U2 = 0.
(16)

Finding νb (b = 0, 1, 2) such that nontrivial solutions Ub of system (16) exist for a specified domain Ω is
called the eigenfunctions and eigenvalues problem. These boundary-value problems are usually solved using the Ritz
and Bubnov–Galerkin methods, integral transformations, and finite-difference methods. We propose the following
numerical-analytical method.

In the domain Ω, we choose a point O with radius vector r0 as a pole, so that any radial E drawn through
O at any angle θ to the x axis intersects the boundary Γ only at two points D+ and D−. For each of the three
equations of system (16), we introduce three new geometrical variables ξ(b) (b = 0, 1, 2) as follows:

ξ(b) = ab(x− x0) cos θ + cb(y − y0) sin θ, (x, y) ∈ Ω, b = 0, 1, 2,

a0 = c0 = 1, a1 = c2 =
√
ρ/(λ+ 2µ), a2 = c1 =

√
ρ/µ .

(17)

In (17), n = (cos θ, sin θ) is the unit vector directed along E.
Ignoring the boundary conditions, we find particular solutions of system (16) for the case where Ub depend

only on one variable ξ(b). Setting Ub = P (ξ(b)), we write all three equations from (16) as

P ′′(ξ(b)) + ν2
bP (ξ(b)) = 0, b = 0, 1, 2. (18)

The general solution of Eqs. (18) is given by

P (ξ(b)) = Kb cos (νbξ
(b)) + Lb sin (νbξ

(b)), b = 0, 1, 2, (19)

where Kb and Lb (b = 0, 1, 2) are arbitrary constants, that depend on the angular parameter θ. Upon variation of θ
within the range [0, π), the sets of points of intersection D+ and D− form the boundaries Γ+ and Γ−, respectively.
Thus, the boundary Γ consists of two parts Γ+ and Γ−. For various values of θ, we obtain a bundle of radials E at
the point O. For θ = π, the location of the straight line E coincides with its location for θ = 0. If the straight line
E is rotated within the limits θ ∈ [π, 2π), the points D+ and D− pass through the boundary Γ for the second time,
which is not needed. These considerations are used to choose the limits of variation in θ in the definite integrals and
sums given below. The functions P (ξ(b)) (b = 0, 1, 2) from (19) satisfy system (16) identically for any θ; therefore,
using solutions (19), we construct the following solution of system (16) by integral superposition for θ:

Ub =

π∫
0

[Kb(θ) cos (νbξ
(b)) + Lb(θ) sin (νbξ

(b))] dθ +
n∑

i=1

[K∗
bi cos (νbξ

(b)
i ) + L∗bi sin (νbξ

(b)
i )],

ξ
(b)
i = ab(x− x0) cos θi + cb(y − y0) sin θi, 0 6 θi < π, b = 0, 1, 2, i = 1, . . . , n.

(20)

Here Kb(θ) and Lb(θ) are unknown functions of θ summable in the Lebesgue sense, K∗
bi and L∗bi and θi are unknown

coefficients and angles in the finite sums, respectively, and n is an unknown number of terms. The presence of the
finite sum of n terms in the eigenfunctions (20) makes the future expression of the solution more general because
in some problems [13] the solution consists only of such terms; in other cases (for example, for a circle), it consists
only of definite integrals over the parameter θ. To find the above-listed unknowns, we substitute Ub from (20) into
the boundary conditions from (16):

Ub

∣∣∣
Γ

=

π∫
0

[Kb(θ) cos (νbξ
(b)
Γ ) + Lb(θ) sin (νbξ

(b)
Γ )] dθ +

n∑
i=1

[K∗
bi cos (νbξ

(b)
iΓ ) + L∗bi sin (νbξ

(b)
iΓ )] = 0,

ξ
(b)
Γ = ab(xΓ − x0) cos θ + cb(yΓ − y0) sin θ, (xΓ, yΓ) ∈ Γ,

(21)

ξ
(b)
iΓ = ab(xΓ − x0) cos θi + cb(yΓ − y0) sin θi, 0 6 θi < π, b = 0, 1, 2, i = 1, . . . , n.

Thus, we arrive at the following eigenfunctions and eigenvalues problem: given three independent homoge-
neous integral equations (21), it is required to find three spectra of eigenvalues {νbi} such that nontrivial solutions Ubi

exist. To solve this problem, we partition the interval [0, π) into small sectors ∆θj (j = 1, . . . ,m) and write the
integrals in (20) and (21) as finite sums. This approach allows one to find the average values of the functions Kb(θ∗k)
and Lb(θ∗k) [14], which is sufficient for this method. Here θ∗k are certain average values of the angles θ in the intervals
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∆θk. We assume that the partitioning is so fine (m � n) that each sector ∆θk contains only one angle θi from
the finite sums in (20). In this case, it is not known in advance which angles θi from the finite sums fall in the
sectors ∆θj . To eliminate this uncertainty, we assume that the angles θi fall in each small sector ∆θj . If a certain
sector does not contain angles θi from the finite sums, the corresponding quantities K∗

bi and L∗bi vanish. Thus, we
represent the functions Ub from (20) approximately by the sums

Ub =
m∑

j=1

[Kbj cos (νbξ
(b)
j ) + Lbj sin (νbξ

(b)
j )], 0 6 θj < π,

Kbj cos νbξ
(b)
j = Kb(θ∗j ) cos νbξ

(b)
j (θ∗j )∆θj +K∗

bj cos νbξ
(b)
j ,

Lbj sin νbξ
(b)
j = Lb(θ∗j ) sin νbξ

(b)
j (θ∗j )∆θj + L∗bj sin νbξ

(b)
j ,

(22)

ξ
(b)
j = ab(x− x0) cos θj + cb(y − y0) sin θj ,

where θ∗j are certain average values of the angles θ in the sectors ∆θj . In (22), the integral sums and finite sums

with n terms are combined. Hence, the expressions for Kbj cos νbξ
(b)
j and Lbj sin νbξ

(b)
j in (22) consist of two parts.

The first parts of the type Kb(θ∗j ) cos νbξ
(b)
j (θ∗j )∆θj (from the integral sums) depend on the partitioning method,

whereas the second parts of the type K∗
bj cos νbξ

(b)
j (from the finite sums) are independent of this method. We use

this property to find the quantities K∗
bj and L∗bj and their number n in the finite sums in (20) and (21). If the order

of certain Kbj and Lbj remains unchanged as ∆θj decreases, the corresponding K∗
bj and L∗bj exist and their number

is equal to the desired n. In constructing the solution, it is not necessary to find the points D+ and D− at which
the straight lines E intersect the boundary. A simpler method is to partition Γ into small intervals regardless of
the angles θj and straight lines E, so that the number of the partition points on Γ is equal to 2m, i.e., twice the
number of angles θj , and satisfy the boundary conditions at these points. Setting rΓ = rk (k = 1, . . . , 2m) in (21),
we write these boundary conditions as

Ub

∣∣∣
Γ

=
m∑

j=1

[Kbj cos (νbξ
(b)
kj ) + Lbj sin (νbξ

(b)
kj )] = 0, b = 0, 1, 2,

ξ
(b)
kj = ab(xk − x0) cos θj + cb(yk − y0) sin θj , 0 6 θj < π, k = 1, . . . , 2m.

(23)

In (23), we have three independent linear algebraic homogeneous systems, each containing 2m equations for
2m unknowns Kbj and Lbj . These systems have nontrivial solutions if their determinants vanish:

∆(b)
2m = | cos (νbξ

(b)
kj ), sin (νbξ

(b)
kj )| = 0, b = 0, 1, 2. (24)

This is the desired characteristic equation for finding the independent spectra {νbi, Ubi}. It was shown [15] that all
roots of similar spectra νbi are real and distinct. Setting νb = νbi in system (23), we infer that the determinants ∆(b)

2m

vanish. This implies that in each of the three systems (23), one equation becomes dependent on all remaining
equations of the system and, hence, it can be omitted. All equations of the systems considered are equivalent;
therefore, we drop, for example, the last equations and obtain three truncated linear systems with determinants
∆(b)

2m−1. For νb = νbi, the subscript i should be added to the coefficients Kbj and Lbj in systems (23), i.e., these
coefficients are denoted as Kbij and Lbij . These coefficients from the truncated systems (23) are found with accuracy
up to an arbitrary factor, which is determined below from the initial conditions. Therefore, one of these coefficients
can be set equal to an unity, for example, Lbim = 1. Dropping one equation in each of the three systems (23), we
obtain truncated systems each of which contains (2m − 1) equations for the same number of unknowns Kbij and
Lbij :

m∑
j=1

Kbij cos [ν∗bi(θj)ξkj ] +
m−1∑
j=1

Lbij sin [ν∗bi(θj)ξkj ] = − sin [ν∗bi(θm)ξkm],

b = 0, 1, 2, i = 1, . . . ,∞, k = 1, . . . , (2m− 1).
(25)
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From three systems (25), we find the coefficients Kbij and Lbij , substitute them into expressions (22), and
obtain the desired eigenfunctions and eigenvalues {Ubi}:

Ubi =
m∑

j=1

Kbij cos (νbiξj) +
m∑

j=1

Lbij sin (νbiξj) (b = 0, 1, 2, i = 1, . . . ,∞, j = 1, . . . ,m). (26)

Finding the spectra {νbi, Ubi} in explicit form (26) is an important point in constructing the solution of problem
(2)–(5) in general form. For this, using (15) we write the solution of problem (8)–(10) as the sum

u(c) =
∞∑

i=1

(Aci cos (νcit) +Bci sin (νcit))Uci, c = 1, 2,

u(0) =
∞∑

i=1

A0iU0i e−aν2
0it .

(27)

By construction, the functions u(c) and u(0) from (27) satisfy system (8) and boundary conditions (9) at the
points rk for any Abi and Bci. We find these coefficients from the initial conditions (10), which become

∞∑
i=1

AbiUbi = ϕb,
∞∑

i=1

νciBciUci = ψc, b = 0, 1, 2, c = 1, 2. (28)

Equalities (28) should be treated as Fourier expansions of the functions ϕb and ψc in series in the functional
bases {Ubi}, and the quantities Abi and Bci as expansion coefficients. If ϕb ∈ Lα

p and ψc ∈ Lα
p (Lα

p are the classes of
Sobolev–Liouville functions [15]), series (28) converge uniformly in Ω [15] and their expansion coefficients are given
by

Abi =
1
Nbi

∫ ∫
Ω

ϕbUbi ds, Bci =
1

νciNci

∫ ∫
Ω

ψcUci ds, Nbi =
∫ ∫
Ω

U2
bi ds (b = 0, 1, 2, c = 1, 2). (29)

Thus, the solution of problem (8)–(10) is constructed as follows: the functions u(b) (b = 0, 1, 2) should be
taken from (27), the coefficients Abi and Bci from (29), the eigenfunctions Ubi from (26), and the eigenvalues νbi from
the solution of the characteristic equation (24). We now proceed to the solution of problem (11)–(13).

4. Constructing the Solution for the Displacements of the Body. Since the three bases {Ubi}
(b = 0, 1, 2) belong to the class C∞(Ω) and are independent of one another, each eigenfunction (or its partial
derivatives with respect to x and y) in one basis can be expanded in terms of the eigenfunction of another basis.
Below, we use the spectral decompositions

U2ixy =
p∑

j=1

α
(1)
ij U1i, U1ixy =

p∑
j=1

α
(2)
ij U2j , α

(1)
ij =

1
N1j

∫ ∫
Ω

U2ixyU1j ds, α
(2)
ij =

1
N2j

∫ ∫
Ω

U1ixyU2j ds; (30)

U1ix =
p∑

j=1

γ
(1)
ij U0j , U2iy =

p∑
j=1

γ
(2)
ij U0j , γ

(1)
ij =

1
N0j

∫ ∫
Ω

U1ixU0j ds, γ
(2)
ij =

1
N0j

∫ ∫
Ω

U2iyU0j ds; (31)

Gc =
p∑

j=1

gcjUcj , gcj =
1
Ncj

∫ ∫
Ω

GcUcj ds, c = 1, 2; (32)

U0ix =
p∑

j=1

α
(0)
ij U1i, U0iy =

p∑
j=1

β
(0)
ij U2i, q =

p∑
i=1

qiU0i,
(33)

α
(0)
ij =

1
N1j

∫ ∫
Ω

U0ixU1j ds, β
(0)
ij =

1
N2j

∫ ∫
Ω

U0iyU2j ds, qi =
1
N0i

∫ ∫
Ω

qU0i ds;

U1ixx =
p∑

j=1

β
(1)
ij U1j , U2iyy =

p∑
j=1

β
(2)
ij U2j , β

(1)
ij =

1
N1j

∫ ∫
Ω

U1ixxyU1j ds, β
(2)
ij =

1
N2j

∫ ∫
Ω

U2iyyU2j ds. (34)
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The spectral decompositions of U1iyyand U2ixx can be obtained using the equations from system (15) and
the expansions for U1ixx and U2iyy from (34):

U1iyy = − ρ
µ
ν2
1iU1i −

(λ
µ

+ 2
) p∑

j=1

β
(1)
ij U1j , U2ixx = − ρ

µ
ν2
2iU2i −

(λ
µ

+ 2
) p∑

j=1

β
(2)
ij U2j . (35)

The number of terms p in (30)–(35) is determined by the calculation accuracy. The need for these formulas is due
to the fact that the equations of system (11) are coupled. We seek a solution of problem (11)–(13) in the form

v(b) =
p∑

i=1

Tbi(t)Ubi, b = 0, 1, 2, (36)

where Tbi(t) are unknown functions of the single variable t. To find them, we substitute the expressions for v(b)

from (36) into system (11):

a

p∑
i=1

T0i∆U0i − η

p∑
i=1

[T ′1iU1ix + T ′2iU2ix] + q =
p∑

i=1

T ′0iU0i,

(λ+ 2µ)
p∑

i=1

T1iU1ixx + (λ+ µ)
p∑

i=1

T2iU2ixy + µ

p∑
i=1

T1iU1iyy + (ζ + 2χ)
p∑

i=1

T ′1iU1ixx

+ (ζ + χ)
p∑

i=1

T ′2iU2ixy + χ

p∑
i=1

T ′1iU1ixx − γ

p∑
i=1

T0iU0ix +G1 = ρ

p∑
i=1

T ′′1iU1i,

(λ+ 2µ)
p∑

i=1

T2iU2iyy + (λ+ µ)
p∑

i=1

T1iU1ixy + µ

p∑
i=1

T2iU2ixx + (ζ + 2χ)
p∑

i=1

T ′2iU2iyy

(37)

+ (ζ + χ)
p∑

i=1

T ′1iU1ixy + χ

p∑
i=1

T ′2iU2ixx − γ

p∑
i=1

T0iU0iy +G2 = ρ

p∑
i=1

T ′′2iU2i.

Each term in the first, second, and third equations of system (37) should be expanded in terms of the eigenfunctions
U0(ν0i), U1(ν1i), and U2(ν2i), respectively. To this end, we use Eqs. (16) and the spectral decompositions (30)–(35).
Then, equating the coefficients of the corresponding eigenfunctions, we obtain the following system of ordinary
differential equations for Tbi(t) (b = 0, 1, 2):

T ′0i + η

p∑
j=1

(γ(1)
ji T

′
1j + γ

(2)
ji T

′
2j) + aν2

0iT0i = qi, i = 1, . . . , p,

ρT ′′1i + ρν2
1iT1i − (λ+ µ)

p∑
j=1

α
(1)
ji T2j − (ζ + 2χ)

p∑
j=1

β
(1)
ji T

′
1j − (ζ + χ)

p∑
j=1

α
(1)
ji T

′
2j

+ χ
ρ

µ
ν2
1iT

′
1i + χ

(λ
µ

+ 2
) p∑

j=1

β
(1)
ji T

′
1j + γ

p∑
j=1

α
(0)
ji T0j = g1i, (38)

ρT ′′2i + ρν2
2iT2i − (λ+ µ)

p∑
j=1

α
(2)
ji T1j − (ζ + 2χ)

p∑
j=1

β
(2)
ji T

′
2j − (ζ + χ)

p∑
j=1

α
(2)
ji T

′
1j

+ χ
ρ

µ
ν2
2iT

′
2i + χ

(λ
µ

+ 2
) p∑

j=1

β
(2)
ji T

′
2j + γ

p∑
j=1

β
(0)
ji T0j = g2i.

Using (13), we obtain the following initial conditions for the inhomogeneous system (38):

Tbi

∣∣∣
t=0

= 0, b = 0, 1, 2; T ′ci

∣∣∣
t=0

= 0, c = 1, 2. (39)
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The linear system of ordinary differential equations (39) consists of 3p equations for 3p unknowns T0i, T1i,
and T2i. Its solution subject to the initial conditions (39) can be written in terms of quadratures by using, for
example, the method of variation of constants [16].

We assume that system (38) is solved subject to the initial conditions (39) and the functions Tbi (b = 0, 1, 2,
i = 1, . . . , p) are found. Using Tbi(t) and Ubi, we determine v(b) from formulas (36). Substitution of u(b) and v(b)

into (6) yields the desired solution of the problem (2)–(5).
5. Error Estimate. The error of the method is due to the replacement of integrals in (20) and (21)

by the integral sums (22) and the satisfaction of the boundary conditions only at the calculation points rather
than everywhere on Γ. The integrals are replaced by integral sums using the trapezoidal formula, Simpson’s rule,
etc. [17]. Each of these formulas can be written as a linear relation between the values of the integrand function at
the calculation points of the variable θ. This relation can be reduced to the form (22) with accuracy up to notation.
Denoting the difference between the exact solution U and the approximate solution Ũ by δU = U − Ũ and using
Simpson’s rule, we obtain

δU = ∆θ5W (x, y), (x, y) ∈ Ω, ∆θ = max∆θk (40)

[W (x, y) is a limited function in Ω]. Since U ∈ C∞(Ω) and Ũ ∈ C∞(Ω), then W ∈ C∞(Ω). To estimate the
function W , we use a pattern of two points Di and Di+1 on Γ. We introduce a local coordinate system in such
a manner that the x axis passes through these points and the y axis passes through the midpoint of the segment
DiDi+1. The equation of the part of the boundary DiDi+1 is written as

y = y(0) + y′(0)x+ y′′(0)x2/2 +O(h3) (41)

(2h is the distance between the neighboring partition points on Γ). Using the condition y(±h) = 0, we simplify
Eq. (41):

y = æ(x2 − h2)/2 +O(h3), æ = y′′(0). (42)

We expand W in a Taylor series in the neighborhood of the coordinate origin, restrict ourselves to terms
linear in y and quadratic in x:

W = W (0, 0) +Wxx+Wxxx
2/2 +Wxyxy +Wyy + . . . . (43)

In (42), the expansion for y contains terms up to x2; therefore, in (43) terms linear in y and quadratic in x should
be retained as terms of the same order of smallness. Using the relation W (Di) = W (Di+1) = 0, we simplify
expansion (43):

W = Wxx(0, 0)(x2 − h2)/2 +Wy(0, 0)y + . . . . (44)

In (44), the parabolic dependence of W on x implies that max |W | is reached on Γ at the midpoint between the
points Di and Di+1, i.e., at the point Q(0,−æh2/2):

max |W | = (1/2)h2
∣∣∣Wxx + æWy

∣∣∣
Γ

+ . . . .

From this, taking into account (40), we obtain

|δU | = (1/2)h2∆θ5
∣∣∣Wxx + æWy

∣∣∣
Γ

+ . . . .

Denoting the maximum diameter of the domain Ω byD0, we haveD0∆θ > 2h and finally obtain the error estimate:

|δU | < (1/8)D2
0∆θ

7
∣∣∣Wxx + æWy

∣∣∣
Γ

+ . . . . (45)

In particular, estimate (45) shows that the size h should be diminished as the curvature æ of the boundary Γ
increases.

6. Numerical Experiment. Numerical experiments were performed to compare the approximate solution
and the exact solution for a unit circle. Using a linear transformation, the differential operator on the left side
of (16) can be reduced to the Laplace operator, for which a numerical experiment was performed. The error of
the method arises first in determining the eigenfunctions Ubi = Ui from (22) for νb = νbi = νi and then in the
subsequent spectral decompositions. Therefore, we can confine our considerations to the errors in calculating Ui
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TABLE 1

m δν1 δν2 δνi

20 10−45 10−30 max i = 8; δν8 = 10−6

30 10−77 10−55 max i = 13; δν13 = 10−6

50 10−150 10−114 max i = 24; δν24 = 10−6

TABLE 2

m δU1 δU2 δU1x δU2x δU1xx δU2xx δU1xxx δU2xxx

20 10−45 10−30 10−43 10−29 10−42 10−27 10−39 10−24

50 10−150 10−114 10−148 10−112 10−146 10−110 10−142 10−106

and νi. The errors in the eigenfunction δUi and their partial derivatives were determined at the midpoints between
the partition points on Γ. At approximately these points, the error δUi reaches a maximum value.

The errors δνi for various m (m is the number of straight lines E) are listed in Table 1. One can see that 24
eigenfunctions and eigenvalues Ui and νi are calculated with high accuracy for 50 radials (m = 50) and 100 points
on Γ. The errors in determining Ui and νi are very small, whereas the errors δUi and δνi increase monotonically with
the number i. This drawback is partly eliminated since, by virtue of convergence of the spectral decompositions,
the effect of the eigenfunction Ui decreases as i increases. It can be concluded that for 2m (m > 30) partition points
on Γ, the method allows one to calculate approximately m/2 eigenvalues and eigenfunctions with an error not worse
than 10−6. As m increases, all errors decrease rapidly. The error for δν1 ≈ 10−3m. The choice of the value of m
depends not only on the errors δUi but also on the number of terms in the spectral decompositions required to
provide the specified accuracy. In this method, partial derivatives can be calculated analytically. The errors for the
partial derivatives at the boundary points on the x axis are given in Table 2. It follows that each two derivatives
increase the error by approximately three orders of magnitude. Nevertheless, the errors even for the fourth partial
derivative are very small. The location of the pole r0 has little effect on the calculation error.

In finite-difference methods for a unit circle using a 100-node mesh, the error is much higher and the
calculations should be repeated many times in each small time layer, which involves sub-boundary difficulties and
increases the error.

We note that for the approximate solution of the initial boundary-value problem, the boundary conditions
are satisfied approximately between the calculation points on Γ but these conditions are satisfied exactly at the
calculation points. The approximate solution has analytic form, which allows one to perform various model experi-
ments and studies. Moreover, it satisfies the initial system of differential equations and, hence, adequately describes
the physical properties used in the mathematical model. The initial conditions (5) can be satisfied with any specified
accuracy by retaining an appropriate number of terms p in decompositions (30)–(35). For 100 partition point on
the boundary, it suffices to solve a linear system of 100 equation once. As a result, one obtains a solution which
can be used for any finite interval of time. Particular solutions obtained by this method for simpler models can be
found, for example, in [10, 18].
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